Diffusion on the Total Space of a Vector Bundle

نویسنده

  • Dragoş Hrimiuc
چکیده

In recent years the study of the differential geometry of the total space E, of a vector bundle π : R → M , initiated by R.Miron [11], [12] has been developed by many people (see [13] and the references therein). If we take a horizontal complement of the vertical subbundle V E, we can express the geometrical objects defined on E in a more simplified form and new geometric objects can be obtained. Recently P.L.Antonelli and T.Zastawniak in a series of papers [2], [3], [4] extended the Riemannian theory of diffusion processes and stochastic development to the case of Finsler manifolds, the extension being motivated by important problems in Biology [3], [5]. In this paper we extend their formalism to study some geometric problems of the theory of the diffusion process and the stochastic development on E, related to these new geometric objects on E. We thereby obtain further generalization and geometric meaning for certain results of [2], [3]. But few probabilistic calculations are given here, for they are given in [2], [3], [4]. In a forthcoming publication, as a particular case, the theory of diffusion and stochastic development on Lagrange manifolds will be discussed [9]. Mathematics Subject Classification: 60J60, 58G32

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

m-Ary Hypervector Space: Convergent Sequences and Bundle Subsets.

In this paper, we have generalized the definition of vector space by considering the group as a canonical $m$-ary hypergroup, the field as a krasner $(m,n)$-hyperfield and considering the multiplication structure of a vector by a scalar as hyperstructure. Also we will be consider a normed $m$-ary hypervector space and introduce the concept of convergence of sequence on $m$-ary hypernormed space...

متن کامل

Identification of Riemannian foliations on the tangent bundle via SODE structure

The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

Assessment of Diffusion Anisotropy of White Matter in Areas of the Brain with crossing fibers: A simulation study

Introduction: We present a model of simulation of diffusion in white matter. This model has been used in Diffusion Weighted Imaging researches as a tool for employing cylindrically constrained two-tensor models to identify two independent directions within a voxel and assessing the orientation angle as a parameter that influence on fractional anisotropy.   Materials a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007